Multilevel Additive Preconditioner For Elliptic Problems On Non-Nested Meshes

نویسندگان

  • T Chan
  • B Smith
  • J Zou
چکیده

Overlapping schwarz methods on unstructured meshes using non-matching coarse grids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems

A local multilevel product algorithm and its additive version are analyzed for linear systems arising from the application of adaptive finite element methods to second order elliptic boundary value problems. The abstract Schwarz theory is applied to verify uniform convergence of local multilevel methods featuring Jacobi and Gauss-Seidel smoothing only on local nodes. By this abstract theory, co...

متن کامل

A Multilevel Method for Discontinuous Galerkin Approximation of Three-dimensional Elliptic Problems

We construct optimal order multilevel preconditioners for interiorpenalty discontinuous Galerkin (DG) finite element discretizations of 3D elliptic boundary-value problems. A specific assembling process is proposed which allows us to characterize the hierarchical splitting locally. This is also the key for a local analysis of the angle between the resulting subspaces. Applying the corresponding...

متن کامل

Multiresolution Approximate Inverse Preconditioners

We introduce a new preconditioner for elliptic PDE’s on unstructured meshes. Using a wavelet-inspired basis we compress the inverse of the matrix, allowing an effective sparse approximate inverse by solving the sparsity vs. accuracy conflict. The key issue in this compression is to use second-generation wavelets which can be adapted to the unstructured mesh, the true boundary conditions, and ev...

متن کامل

Parallel Multilevel Preconditioners

In this paper, we provide techniques for the development and analysis of parallel multilevel preconditioners for the discrete systems which arise in numerical approximation of symmetric elliptic boundary value problems. These preconditioners are defined as a sum of independent operators on a sequence of nested subspaces of the full approximation space. On a parallel computer, the evaluation of ...

متن کامل

Multilevel Preconditioning of Elliptic Problems Discretized by a Class of Discontinuous Galerkin Methods

We present optimal order preconditioners for certain discontinuous Galerkin (DG) finite element discretizations of elliptic boundary value problems. A specific assembling process is proposed which allows us to use the hierarchy of geometrically nested meshes. We consider two variants of hierarchical splittings and study the angle between the resulting subspaces. Applying the corresponding two-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994